Topological Analysis Of The Electron Density Through The Bader Theory

Petr Cásek*, Fabio Finocchi and Claudine Noguera

Groupe de Physique des Solides, Universités Paris 6 –
Paris 7 and UMR CNRS 7588, 2 place Jussieu,
75251 Paris Cedex 5, France
*Institute of Condensed Matter Physics, Equalty of

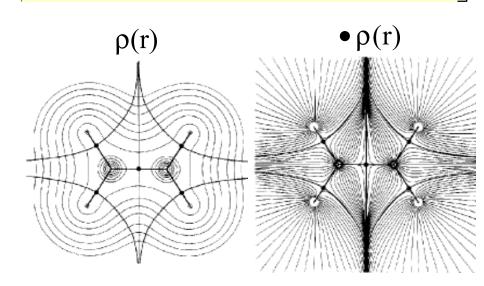
*Institute of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic

Syllabus:

- . Basic concepts of the Bader theory
- . Implementation of the topological analysis
- . Bader analysis in solid systems:
 - Charge
 - LDOS
- . Conclusion and Acknowledgements

Bader Theory

Basic Concepts


Define the charge of the atom-in-the molecule without ambiguity

Example : C_2H_4

http://www.chemistry.mcmaster.ca/faculty/bader

Inter-atomic surfaces: zero flux condition

$$\nabla \rho(r) \cdot n(r) = 0$$

Bond-critical points:

$$\nabla^2 \rho (r_{BCP}) > 0$$
 // bond
 $\nabla^2 \rho (r_{BCP}) < 0 \perp \text{bond}$

- Integration of $\rho(r)$ inside atomic basins yields charge Q
- Integration of wave functions yields LDOS

Bonds are defined on the basis of the electron distribution : no arbitrary cut-off

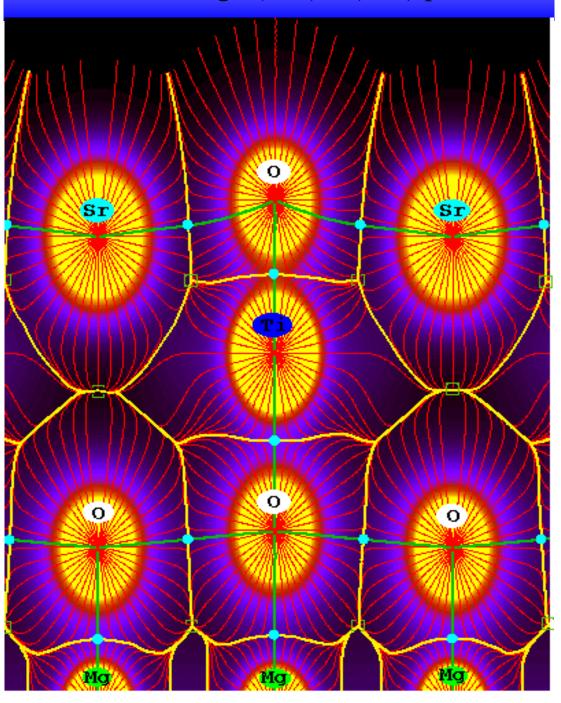
Inspection of ρ (r_{BCP}) gives information on the ionic/covalent nature of the bond

The Implementation of The Bader theory

Input

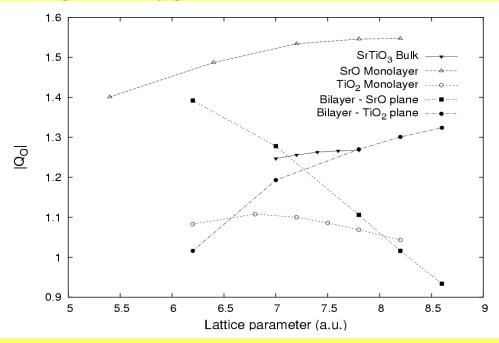
- ABINIT => valence density output file
- FHI98PP => core density files

. Implementation

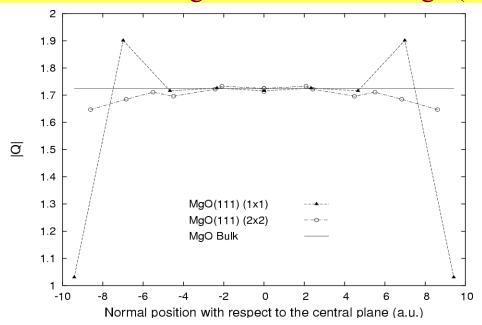

- 3D real space interpolation scheme based on the cubic splines in 1D
- Independent handling of the core and valence density

. Algorithm (to be repeated for each atom)

- CP searching Popellier algorithm : $nucleus \Rightarrow (3,-1) \Rightarrow (3,1) \Rightarrow (3,3)$
- Determination of the Bader radius as a function of the polar and azimuthal angles (starting near the CP) the procedure taking most of the time!
- Integration of the charge (or other quantities) inside the Bader surface

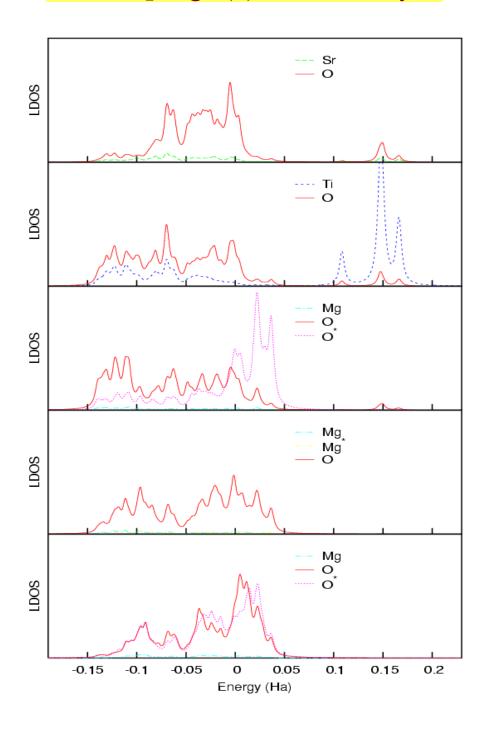

Note: there may be atom-like attractors even in absence of nuclei (ex: O vacancies in oxides).

Bader Analysis Sr0-TiO₂-MgO(001) – (110) plane



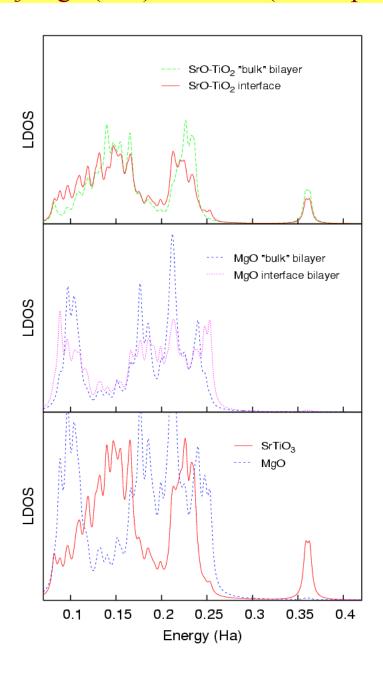
Bader Charge some examples

Charge of Oxygen in different environments



Variation of the charge at the surface - MgO(111)

LDOS Of The Bader Atom


SrO-TiO₂-MgO(3) -LDOS analysis

Band-offset Analysis

(preliminary results)

SrTiO₃-MgO(001) Interface (7+7 superlattice)

Conclusion

Implemented in ABINIT:

- Critical point analysis
- Determination of the Bader surface
- Calculation of the Bader charges and the volume of the atomic basins

Developments

- LDOS analysis
- Visualisation

Acknowledgments

- Javier D. Fuhr and Jorge O. Sofo for providing the original code (for the output of WIEN)
- Xavier Gonze for help with the implementation to ABINIT
- •All ABINIT group for the invitation!